Two maternally derived X chromosomes contribute to parthenogenetic inviability.

نویسندگان

  • J R Mann
  • R H Lovell-Badge
چکیده

In certain extraembryonic tissues of normal female mouse conceptuses, X-chromosome-dosage compensation is achieved by preferential inactivation of the paternally derived X. Diploid parthenogenones have two maternally derived X chromosomes, hence this mechanism cannot operate. To examine whether this contributes to the inviability of parthenogenones, XO and XX parthenogenetic eggs were constructed by pronuclear transplantation and their development assessed after transfer to pseudopregnant recipients. In one series of experiments, the frequency of postimplantation development of XO parthenogenones was much higher than that of their XX counterparts. This result is consistent with the possibility that two maternally derived X chromosomes can contribute to parthenogenetic inviability at or very soon after implantation. However, both XO and XX parthenogenones showed similar developmental abnormalities at the postimplantation stage, demonstrating that parthenogenetic inviability is ultimately determined by the possession of two sets of maternally derived autosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The development of XO gynogenetic mouse embryos.

Diploid gynogenetic embryos, which have two sets of maternal and no paternal chromosomes, die at or soon after implantation. Since normal female embryos preferentially inactivate the paternally derived X chromosome in certain extraembryonic membranes, the inviability of diploid gynogenetic embryos might be due to difficulties in achieving an equivalent inactivation of one of their two maternall...

متن کامل

Bex1, a gene with increased expression in parthenogenetic embryos, is a member of a novel gene family on the mouse X chromosome.

Parthenogenetic and normal blastocysts were compared using differential display analysis as a means to identify new imprinted genes. A single gene was identified with increased expression in parthenogenetic blastocysts, suggesting it might be an imprinted gene expressed from the maternally inherited allele. The gene, named Bex1 (brainexpressedX-linked gene), maps near Plp on the mouse X chromos...

متن کامل

Parthenogenetic chimaerism/mosaicism with a Silver-Russell syndrome-like phenotype

INTRODUCTION We report a 34-year-old Japanese female with a Silver-Russell syndrome (SRS)-like phenotype and a mosaic Turner syndrome karyotype (45,X/46,XX). METHODS/RESULTS Molecular studies including methylation analysis of 17 differentially methylated regions (DMRs) on the autosomes and the XIST-DMR on the X chromosome and genome-wide microsatellite analysis for 96 autosomal loci and 30 X ...

متن کامل

Epigenetic analysis of bovine parthenogenetic embryonic fibroblasts

Although more than 100 imprinted genes have already been identified in the mouse and human genomes, little is known about genomic imprinting in cattle. For a better understanding of these genes in cattle, parthenogenetically activated bovine blastocysts were transferred to recipient cows to obtain parthenotes, and fibroblasts derived from a Day 40 (Day 0 being the day of parthenogenetic activat...

متن کامل

Correction: Fine Mapping of Dominant X-Linked Incompatibility Alleles in Drosophila Hybrids

Sex chromosomes have a large effect on reproductive isolation and play an important role in hybrid inviability. In Drosophila hybrids, X-linked genes have pronounced deleterious effects on fitness in male hybrids, which have only one X chromosome. Several studies have succeeded at locating and identifying recessive X-linked alleles involved in hybrid inviability. Nonetheless, the density of dom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 1988